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Currently there is considerable interest in the problem of creating hollow microspheres 
of uniform thickness made of amorphous materials of the glass, plastic, and polymer types. 
In the first instance this is connected with question of microencapsulation [I], and also 
development of new areas for the application of microspheres: laser thermonuclear targets; 
microballoons for storing hydrogen, oxygen, and rocket fuels under high pressure; a filler 
for structural panels of flying and underwater equipment (see [2] and the bibliography in it). 

In this work the process of nonisothermal expansion of an almost spherical thin liquid 
shell is considered under the action of heated gas pressure in the cavity. A phenomenologi- 
cal model is suggested based on the laws of mass, pulse, and energy conservation in an ap- 
proximation of a thin layer which are closed by thermodynamic fundamental relationships for a 
thin film [3]. A numerical study is made of the mechanism of microsphere alignment imposed 
on the model connected with the dependence of material film viscosity on temperature. 

In the approximation of a thin film the position of a liquid shell at instant of time t 
is prescribed by a two-dimensional surface F = F(t) at each point x of which velocity v, 
thickness h, absolute temperature e, tension ~, and internal surface energy e are determined. 
We assume that a polytropic gas within the cavity forms a closed thermodynamic system, i.e., 
its mass M is constant, and volume V, internal energy E, absolute temperature 80, and pres- 
sure P0 only depend on time and they are connected by the equations 

poV ~ 3IRoO,/m,  E -~-3/co0 o (i) 

(R 0 is gas constant, m is molecular weight, c o is gas heat capacity). Correspondingly an ex- 
ternal gas will play the role of a heat and pressure reservoir with characteristics 0~, p~. 

Let 9, e, o, • and p(0) denote density, coefficients of specific heat capacity, surface 
tension, thermal conductivity, and film material viscosity, and 

9 (0) = 9 v exp(O, lO) ( 2 )  

(v, 0, are constant values). Equation (2) is a good approximation of the dependence of dy- 
namic viscosity coefficient for amorphous material on temperature. For simplicity 9, c, 
o, x are assumed to be constant. 

We take as independent thermodynamic parameters of the film thickness h and temperature 
8 and we assume the equalities �9 = 20, ~ = 20 + pchS. In other words, film tension is made 
up of surface tensions of facial interphase boundaries which here are assumed to be non- 
interacting (~h = 0), and the expression for energy emerges from the condition for existence 
of entropy: h~(~/h);~=: 02(~/0)~. We fix fundamental relationships for stress tensor T and heat 
flow vector q of film F [3]: 

T = [2!~ + 3 p ( O ) h d i v r v l v r x  ! - 2 9  (O)hDr, q . . . .  • ( 3 )  

Here 7 F is surface gradient; D F is strain rate tensor deviator of F. It is noted that 
coincides with the metric tensor of F and Arx = kn (k = --divvn is the sum of principal curva- 
tures of F, n is vector of the unit normal to F). 

In addition, we assume the following equality for the surface density of heat sources: 

Q -= ~(0+ - -  O) - (Et .-+ poVt ) /A  ( 4 )  

(~ is interphase heat exchange coefficient for the film material with the external gas, A is 
area of F). For an almost spherical microballoon, with an average radius of r 0 = (3V/4~) z/3 
it is reasonable to use the equation ~ == x~/r 0 (• is thermal conductivity coefficient for the 
external gas). In (4) no consideration is given to radiation heat exchange according to the 
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Stefan-Boltzman rule since in calculations for moderate temperature its contribution is 
insignificant. Finally, the following heuristic relationship 

' ~0dr  (5) 00 = 7 
1' 

establishes the connection of the temperatures of the film and gas in the cavity. 

We write asymptotically differential rules for mass, pulse, and energy conservation 
accurate with hk § 0 [3]: 

h" q- h divrv =- 0; (6) 

phv =- divrT q- (P0 -- p~)n; (7)  

pch'O --  ~(0)h[3(divrv) ~ + 2Dr : D r ]  + Q - divrq. (8)  

Here t h e  a c t i o n  of  mass f o r c e s  i s  i g n o r e d ;  normal  n i s  d i r e c t e d  i n t o  t h e  e x t e r n a l  gas ;  t h e  
period above indicates the total derivative with respect to time. 

It is evident that for the position F and distribution of 8 Eqs. (i) and (5) entirely 
determine the thermodynamic gas constant in the cavity,-and therefore the functions sought 
will be h, v, 8 at moving surface F whose points satisfy the equation x = v(x, t). It is neces- 
sary to set initial conditions for them. 

We assume that surface F is star-shaped with respect to the center of mass 

a =  [r h x d F /  f i" (9) 

then it is possible to parametrize it by a unit sphere S : {Is[- i} by means of stereographic 

projection x -- a(t) ~- r(s, t)s with the center at point a. If in the equality x .... a t q- (r t -~ 

s.Vsr)S -~ rs = v(x, t) set rs ---- u(s, t), then we obtain 

V --  a t -~- (r t ~- r- 'u.Vs,.)s q- u, / -= /t ~- "-lU'Vs/ (10)  

[/(s, t) i s  an a r b i t r a r y  f u n c t i o n ] .  These e q u a t i o n s  make i t  p o s s i b l e  to  r e w r i t e  problem ( 1 ) - ( 8 )  
in  t e rms  a(t), r(s, t), h(s, t), 0(s, t), u(s, t) o b t a i n e d  as  a r e s u l t  o f  s u b s t i t u t i n g  v a r i a b l e s .  I t  i s  
evident that vector field u is tangential to sphere S. 

From (6), (7), (9) it follows that art--0, i.e., it is possible to assume that a = 0, 
since the original equations permit Galilean transfer. We consider the main spherically 
symmetrical solution h(t), r(t), 0(t), u ---- 0 and its small perturbations If(s, t), 7~(s, t), @(s, t), u(s, t) 
in terms of which the following linearized equalities are valid 

n --~ S - -  r - I v s R ,  VF = r - 2 [ ( r  - -  . I / )Vs ~- s V s R ' V s ] ,  ( 1 1 )  

VrX = Vs s q- r-1(S| R -~ VsR| divrv = 2rt/r  -j- 2(R/r) t  @ r -1 divsu, Dr = r - l D s  

(| i s  a symbol of  a t e n s o r  p r o d u c t ,  D S i s  d e v i a t o r  o f  t h e  s y m m e t r i c a l  p a r t  o f  t e n s o r  VsU). 
Taking a c c o u n t  o f  (10) and (11)  we o b t a i n  e q u a t i o n s  f o r  d e t e r m i n i n g  t h e  main s o l u t i o n  

(hr2)t = O, phrtt = Po - -  P~ - -  4r-X[ ~ q- 3tt(O)hrt/r], (12)  

pchO t = t2p(O)h(rt/r)"- --{- Q; 

Po = 3MRoO/(~ztr3m), Q := ~(0~o - O) - p o r t  - M coOt/(4~r 2) (13) 

and its perturbation 
(H/h  q- 2R/r) t  + r -1 divsu = 0; (14)  

p(hHtt  1- r t tH)  -" 2r-210-~ 3p(O)hr t / r ] (hsR q- 2R) + 6r-ll~t(O)Ht - -  2~0 (O)Ohrt/r]; (15) 

ph(rutt  -? r t t V s R )  -~ 2tt(0)hr -1 divsDs -- 3Vs [9(0)Ht -- 2~0 (O)Ohrt/r]; (16)  

pc(hO t + OtH ) -= •  - -  t21x(O)h(rt/r)(H/h)t -+ t2(rt/r)2[h~xo (0)O q- ~(0)H] -- ~O. (17) 

It is noted that vector divsD S is tangential to sphere S, and in a potential perturbation of 
velocity u = r-~VsU the equality 2divsDs ---- r-*vs(AsU ~- 2U) is valid. In this case (16) is 
transformed into a scalar equation for potential 

ph(U t + rt~R) = iX(O)hr-2(AsU + 2U) + 6~e (O)Ohr,/r - 3~.(0)H,. (18)  
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In deriving equations in the versions (14)-(18) it is assumed that H, R, @ , and U have a 
zero mean with respect to sphere S, and therefore A, V, 80, P0, and ~ are not perturbed on 
account of the equations 

A = 4 a r  2+  2r, RdS ,  V = ~ ~r 3 + r 2, = 
S S S 

I t  i s  e v i d e n t  t h a t  problem (14) ,  ( 15 ) ,  ( 17 ) ,  (18)  assumes s e p a r a t i o n  o f  v a r i a b l e s ,  and 
t h e  f i r s t  s p h e r i c a l  harmonic  which a l s o  d e t e r m i n e s  t h e  deg ree  of  m i c r o s p h e r e  a l i g n m e n t  w i l l  
attenuate weakest of all. If we limit ourselves to perturbations of this form, by retaining 

t h e  c e n t e r  of  mass a =  ~ ,]\  h + - j s d S '  and in  f a c t  (e = c o , s t ) H =  ~(0e.s ,  B ==--(r /3@,(0e.s ,  ~ = 
s 

0(t)e.s, t hen  f o r  h ( t ) ,  0 ( t )  we o b t a i n  normal  d i f f e r e n t i a l  e q u a t i o n s  

p lrt t f -  h(rh/3h) tt ] == (;r-I [~.t (0)~ -- 2~e(O)~zrt/r  I; ( 19 ) 

pc (h~  ~- Ot~  - t 2(r/r) 2 [hpe(0)O -? p(0)~] - - i2~(O)h( , ' t / r ) (h /h) t  - -  2• - -  ~ .  ( 2 0 )  

Thus, the set of Eqs. (12), (13), (19), (20) with respect to h(t), r(t), 0(t), h(t), 0(t) with 
prescribed dependences p(8) [Eq. (2)] and ~ ~ • is the simplest model of microsphere align- 
ment. 

It is noted that from (19) in a quasistationary approximation (i.e., when forces of 
inertia are omitted) there follows the equation ~t = 2~8(8)Shrt/[ru~8)] from which it is pos- 
sible to estimate qualitatively the behavior of h(t). In fact, if 8 > 0 with h > 0 ("thermal 
inertia" of the film predominates over the dissipative effect), then the alignment process 
is realized for a microballoon (h t < 0) for rt>0, ~(0)<0. 

The set of differential equations (12), (13), (19), (20) was integrated numerically with 
the initial conditions r(0) = 500 ~m, h(0) = i00 ~m, 8(0) = 2000 K 8(0) = 0, h(0) ~ 0 (origi- 
nal misalignment). In this case consideration of forces of inertia cause in calculations 
development of a sharp boundary layer with t = 0, and therefore a quasistationary approxima- 
tion is used where velocity rt(0) is not prescribed. Glass was selected as a microsphere ma- 
terial with the following physical characteristics [4]: p = 2200 kg/m 3, c = 1437 J/(kg'K),, 

= 2.35 W/(m.K), o = 0.3 N/m. The internal gas was air whose mass was 0.02% of the mass 
of the shell, and the external gas had the characteristics: • = 3.10 -2 W/(m-K), 8~ = 300 K, 
p~ = 1.01"i04 Pa. The dynamic viscosity coefficient was determined by (2). 

Given in Fig. 1 are the results of calculations for the following values: 1-3) ~ = 4.55" 
I0 -I~ 4.55.10 -~2, 4.55.10 -~~ m=/sec, 8, = 50,000, 55,000, 45,000 K, respectively. Pre- 
sented in Fig. 2 is the dependence of the solution on the change in internal pressure P0 
by an increase in mass of the gas: 0.2 and 2% (curves 1 and 2) of the shell mass with v = 
4.55.10 -I~ m2/sec, 8, = 55,000 K. Noted in Fig. 3 is the effect of external pressure 
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p='10 s, 3.04"103 Pa (curves 1 and 2) with v = 4.55.10 -12 m2/sec, 8, = 55,000 K. 

The alignment mechanism described connected with the dependence of viscosity on tempera- 
ture only operates with expansion of a shell (ht = 0 with h t = 0), and consequently it is 
possible to call it dynamic. Here it is difficult to work out an ideal result (h + 0 with 
t § ~) in view of the short duration of the dynamic process. We also considered a thermo- 
dynamic alignment mechanism based on the dependence of surface tension coefficient o on tem- 
perature 8 which it is simple to consider in the model. However, the calculations performed 
showed the insignificance of this effect for the given size of glass microballoons (it is 
noted that alignment sets in with the natural condition o0(0) < 0). Apparently small micro- 
spheres warm up rapidly, they become almost isothermal, and therefore it is necessary to 
look for and to analyze other alignment mechanisms, for example connected with the dependence 
of tension T on thickness h. 

In conclusion the authors thank Yu. A. Merkul'ev for drawing attention to [5, 6], and for 
useful discussion of the present work. 
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